Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38572517

RESUMEN

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Porcinos , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , China/epidemiología , Enfermedades de los Porcinos/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Gripe Humana/epidemiología , Virus Reordenados/genética , Filogenia
2.
Exp Ther Med ; 27(1): 8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223326

RESUMEN

Butorphanol is a synthetic selective opioid receptor antagonist that exhibits substantial analgesic effects. The present study aimed to explore the effects of butorphanol on a neurodegenerative disease cell model and to investigate its specific regulatory mechanism. Cell viability of PC12 cells was assessed using the Cell Counting Kit-8 assay. Oxidative stress levels were measured by the corresponding kits and western blotting of specific protein markers. Apoptosis was determined using the terminal-deoxynucleoitidyl transferase mediated nick end labeling assay and by western blotting. Western blotting was used to analyze the expression levels of c-Jun NH2-terminal kinase (JNK)/p38 signaling pathway-related proteins. Thiobarbituric acid-reactive substances and Fe+2 content were detected using the corresponding assay kits and the expression levels of ferroptosis-associated proteins were assessed by western blotting following the addition of the JNK activator anisomycin (ANI). Oxidative stress and apoptosis were examined with the aforementioned assays following the supplementation of ANI or the ferroptosis inducer erastin (ERA). It was revealed that butorphanol dose-dependently enhanced the viability and suppressed the oxidative stress and apoptosis of H2O2-treated PC12 cells. In addition, butorphanol blocked JNK/p38 signaling and hampered ferroptosis, while this effect was reversed by ANI. ANI or ERA reversed the effects of butorphanol on oxidative stress and apoptosis of H2O2-treated PC12 cells. In summary, butorphanol suppressed ferroptosis by blocking JNK/p38 signaling to impart inhibitory effects on oxidative stress and apoptosis in a neurodegenerative disease cell model.

3.
BMC Anesthesiol ; 23(1): 381, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990154

RESUMEN

BACKGROUND: Blood nerve barrier (BNB) participates in the development of neuropathic pain. AQP1 is involved in peripheral pain perception and is negatively correlated with HIF-1α phenotype, which regulates endothelial permeability. However, the role of HIF-1α-AQP1-mediated BNB dysfunction in Chronic Postsurgical Pain (CPSP) has not been reported. METHODS: Male Sprague-Dawley rats were randomized into 5 groups: (i) Naive group; (ii) Sham group; (iii) SMIR group: skin/muscle incision and retraction for one hour. Behavioral tests were performed for the three groups, BNB vascular permeability and western blotting were conducted to determine HIF-1α and AQP1 protein expression. (iv) The SMIR + HIF-1α inhibitor group; (v) SMIR + DMSO group. Rats in the two groups were administered with HIF-1α inhibitor (2ME2) or DMSO intraperitoneally on the third day post-SMIR surgery followed by performance of behavioral tests, BNB permeability assessment, and determination of HIF-1α, AQP1 and NF200 protein levels. RESULTS: The permeability of BNB was significantly increased and the expression of AQP1 was downregulated on the 3rd and 7th days post-operation. AQP1 is mainly located in neurons and NF200, CGRP-positive nerve fibers. HIF-1α was highly expressed on the third day post-operation. HIF-1α inhibitor reversed the decrease in AQP1 expression and increase in NF200 expression, barrier permeability and hyperalgesia induced by SMIR on the 3rd day post-surgery. CONCLUSIONS: Early dysfunction of BNB mediated by HIF-1α/AQP1 activated by SMIR may be an important mechanism to promote acute postoperative painful transformation of CPSP. Preadaptive protection of endothelial cells around nerve substructures may be an important countermeasure to inhibit CPSP transformation. Early impairment of BNB function mediated by HIF-1α/AQP1 activated by SMIR may be an important mechanism for promoting acute postoperative pain transformation of CPSP.


Asunto(s)
Acuaporina 1 , Barrera Hematonerviosa , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Barrera Hematonerviosa/metabolismo , Acuaporina 1/genética , Acuaporina 1/metabolismo , Dimetilsulfóxido , Células Endoteliales/metabolismo , Dolor Postoperatorio , Subunidad alfa del Factor 1 Inducible por Hipoxia
4.
Pain Res Manag ; 2022: 8566840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958678

RESUMEN

Purpose: Caveolae (CAV) are an invaginated microcapsule with the shape of Ω on the surface of the cell membrane. Caveolin-1 (CAV-1) is involved in neuropathic pain, and adenosine monophosphate (AMP)-exchange protein directly activated by cAMP1 (EPAC-1) is a potential therapeutic target for chronic pain. However, whether EPAC-1 promotes chronic postsurgical pain (CPSP) through CAV-1 has not been reported. Here, we aim to investigate the underlying mechanism of CAV in CPSP. Methods: All the rats were divided into 9 groups, including the Naive group, Sham group, skin/muscle incision and retraction (SMIR) group, SMIR + CAV-1 siRNA group, SMIR + control siRNA group, SMIR (7 days)+Saline group, SMIR (7 days)+CE3F4 group, 8-PCPT group, and Saline group. The CPSP rat model was established after SMIR. A mechanical withdrawal threshold (MWT) was recorded to evaluate the animal's behavior. Western blotting and immunofluorescent were performed to detect the protein expression levels of EPAC-1 and P-CAV-1. Results: EPAC-1 and CAV-1 were both overexpressed after operation, particularly in astrocytes, microglia, and neurons of spinal marrow (all P < 0.05). Interestingly, CAV-1 siRNA can partly reverse the SMIR-induced hypersensitivity, but there was no effect on EPAC-1. Besides, EPAC-1 blockage partly reversed the SMIR-induced hypersensitivity and CAV-1 overexpression, and EPAC-1 activation promoted CAV-1 overexpression and hypersensitivity in normal rats (all P < 0.05). Conclusion: CAV-1 mediates the functional coupling of microglia, astrocytes, and neurons, and thus EPAC-1/CAV-1 plays an important role in CPSP exacerbation.


Asunto(s)
Caveolas , Dolor Crónico , Animales , Caveolas/metabolismo , Dolor Crónico/etiología , Dolor Crónico/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Dolor Postoperatorio/metabolismo , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley
5.
Virus Res ; 313: 198742, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35283248

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteric coronavirus that causes vomiting, severe diarrhea, dehydration and death in suckling piglets. NS7a is putative accessory protein that is predicted to be encoded by SADS-CoV, but still to be confirmed experimentally. In the present study, recombinant NS7a protein was expressed in a prokaryotic expression system and used as an antigen to prepare monoclonal antibodies (mAbs) specific to NS7a protein. We obtained two anti-NS7a mAbs, termed AH5 and EH3, that were shown by western blotting to react with the natural NS7a protein in Vero E6 cells infected with SADS-CoV. Using the produced mAbs, we observed by confocal microscopy that NS7a protein was expressed in the cytoplasm. Further studies revealed that the motif 31VNTWQEFA38 was the minimal unit of the linear B-cell epitope recognized by mAb AH5, and the motif 82FDLFERF88 was the minimal unit of the linear B-cell epitope recognized by mAb EH3. Alignment of amino acids showed that these two epitopes were highly conserved among different SADS-CoV strains and SADS-related coronaviruses from bats, but with one substitution in these two motifs in bat coronavirus HKU2. In summary, we generated and characterized two mAbs against SADS-CoV NS7a protein, and demonstrated NS7a expression in SADS-CoV-infected cells for the first time.


Asunto(s)
Alphacoronavirus , Coronavirus , Alphacoronavirus/genética , Animales , Anticuerpos Monoclonales , Mapeo Epitopo , Porcinos
6.
Ann Transl Med ; 10(24): 1377, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36660643

RESUMEN

Background: Vascular endothelial barrier disruption is pivotal in the development of acute and chronic pain. Here, we demonstrate a previously unidentified molecular mechanism in which activation of the peripheral Epac1/p-Cav-1 pathway accelerated the disruption of the vascular endothelial barrier, thereby promoting chronic postsurgical pain (CPSP). Methods: We established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR). Pain behaviors were assessed by the mechanical withdrawal threshold (MWT) at different times. Local muscle tissues around the incision were isolated to detect the vascular permeability and the expression of Epac1 and Cav-1. They were assessed by western blot and immunofluorescence staining. Results: SMIR increased vascular endothelial permeability and the number of macrophages and endothelial cells in the muscle tissues around the incision. The peripheral upregulation of Epac1 was macrophage-derived, whereas that of p-Cav-1 was both macrophage and endothelial cell-derived in the SMIR model. Moreover, the Epac1 agonist 8-pCPT could induce mechanical sensitivity, increase the expression of p-Cav-1, and disrupt vascular endothelial barrier in normal rats. The Epac1 inhibitor CE3F4 attenuated established SMIR-induced mechanical hyperalgesia, the upregulation of p-Cav-1 and vascular endothelial barrier. Finally, we showed that intrathecal injection of Cav-1siRNA relieved SMIR-induced mechanical allodynia, but had no effects of the expression of Epac1. Conclusions: Collectively, these results revealed a molecular mechanism for modulating CPSP through the peripheral Epac1/Cav-1 pathway. Importantly, targeting Epac1/Cav-1 signaling might be a potential treatment for CPSP.

7.
Exp Ther Med ; 22(5): 1289, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34630644

RESUMEN

Chronic postsurgical pain (CPSP) has a high incidence, but the underlying mechanisms remain elusive. Previous studies have indicated that caveolin-1 (Cav-1) plays a notable role in pain modulation. To study the role of Cav-1 in CPSP in the present study, a rat model of skin/muscle incision and retraction (SMIR) was established. Under anesthesia, skin and superficial muscle of the medial thigh were incised and a small pair of retractors inserted. It was revealed that SMIR increased the expression of Cav-1 in the dorsal root ganglion (DRG) and the injured tissue around the incision. Furthermore, the infiltration of endothelial cells and macrophages in the injured tissue around the incision increased constantly, and the vascular permeability increased due to the destruction of the vascular endothelial barrier function around the injured tissue. Cav-1 was mainly expressed by CD68-positive macrophages and CD34-positive endothelial cells in the injured tissues around the incision, while it was also primarily localized in the medium and large neurofilament 200-positive neurons and a small number of calcitonin gene-related peptide- and isolectin B4-positive small and medium-sized neurons in the DRG. The results demonstrated that the sustained high expression levels of Cav-1 in the injured tissue around the incision could lead to the dysfunction of the vascular endothelial barrier and, thus, could induce the inflammatory response through the lipoprotein transport of endothelial cells, thereby resulting in peripheral sensitization. In addition, the sustained high expression levels of Cav-1 in the DRG could sensitize large-sized neurons and change the transmission mode of noxious stimuli. The findings of the present study indicated that a Cav-1-mediated process could participate in neuronal transmission pathways associated with pain modulation.

8.
Ann Transl Med ; 9(14): 1170, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34430611

RESUMEN

BACKGROUND: Depression is a neurological disorder characterized by persistent low mood. A number of studies have suggested that the use of type 1 cannabinoid receptor (CB1R) agonists can reduce depressive behavior, but its effect on the depressive behavior and nerve damage of rats exposed to chronic unpredictable mild stress (CUMS) has not been reported. METHODS: Rats were exposed to CUMS for 4 weeks to induce depressive behavior. Male Sprague-Dawley (SD) rats aged 6-8 weeks were randomly divided into six groups: control group (control), depression group (CUMS), depression + fluoxetine group (Flu), depression + WIN55212-2 group (WIN), depression + NF-κB inhibitor group (PDTC), and depression + WIN + PDTC group (WIN + PDTC). We performed four behavioral experiments test to evaluate the depressive behaviors of rats. Hematoxylin and eosin (HE) and Nissl staining were performed to observe the neuron structures of the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was used to measure the concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2). Biochemical experiments were performed to evaluate the concentrations of nitric oxide (NO), malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). Fluorescence quantitative PCR was used to detect the mRNA expression of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), and inducible nitric oxide synthase (iNOS) in the hippocampus, and western blot was performed to detect protein expression levels related to the NF-κB signaling pathway in the hippocampus. RESULTS: Compared with the normal control group, CUMS significantly induced abnormal behaviors in stressed rats. The concentrations of pro-inflammatory factors and oxidative stress injury factors in the hippocampus of the CUMS group increased significantly. The interventions of Flu, WIN, and PDTC significantly reduced neuroinflammation and oxidative stress injury. Compared with the WIN group, the WIN + PDTC intervention group had better results. In addition, WIN could significantly inhibit the activation of the NF-κB signaling pathway. CONCLUSIONS: This study showed that cannabinoid receptor agonists can reduce the CUMS-induced depressive behaviors of rats by blocking the NF-κB signaling pathway to alleviate neuroinflammation and oxidative stress injury.

9.
Viruses ; 13(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34452427

RESUMEN

Coinfection caused by various genotypes of porcine epidemic diarrhea virus (PEDV) is a new disease situation. We previously reported the coexistence of PEDV strains containing different ORF3 genotypes in China. In this study, the PEDV strains 17GXCZ-1ORF3d and 17GXCZ-1ORF3c were isolated and plaque-purified from the same piglet, which had a natural large deletion at the 172-554 bp position of the ORF3 gene or possessed a complete ORF3 gene, respectively. Meanwhile, 17GXCZ-1ORF3d had >99% nt identity with 17GXCZ-1ORF3c in the 5'UTR, ORF1a/1b, S, E, M, N and 3'UTR regions but only demonstrated low nucleotide identities (80.5%) in the ORF3 gene. To elucidate the pathogenicity, 7-day-old piglets were infected. Piglets infected with these two PEDV strains exhibited severe clinical signs and shed the virus at the highest level within 96 hpi. Compared with the piglets inoculated with the 17GXCZ-1ORF3c strain, the piglets inoculated with the 17GXCZ-1ORF3d strain had higher mortality rates (75% vs. 50%), an earlier onset of clinical signs with a significantly higher diarrhea score, lower VH:CD ratios and a higher percentage of PEDV-positive enterocytes. This study is the first to report PEDV coinfections with different ORF3 genotypes, and a PEDV strain with a large deletion in the ORF3 gene might have the advantage of a potential genetic marker, which would be useful during vaccine development.


Asunto(s)
Genotipo , Sistemas de Lectura Abierta/genética , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/patogenicidad , Animales , Chlorocebus aethiops , Coinfección/virología , Infecciones por Coronavirus/virología , Diarrea/virología , Filogenia , Virus de la Diarrea Epidémica Porcina/clasificación , Porcinos , Enfermedades de los Porcinos/virología , Células Vero , Virulencia
10.
Front Vet Sci ; 8: 701612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336982

RESUMEN

Farmers involved in the lucrative pork trading business between China and Southeast Asian countries should be aware of a recently discovered novel porcine deltacoronavirus (PDCoV) in Guangxi province, China. A PDCoV strain, CHN/GX/1468B/2017, was isolated from the small intestinal contents of piglets with diarrhea from this region, with a titer of 1 × 108.0 TCID50/mL on LLC-PK cells. The full-length genome sequence consists of 25,399 nt as determined by next-generation sequencing and this was deposited in the GenBank (accession number MN025260.1). Genomic analysis showed that CHN/GX/1468B/2017 strain had 96.9~99.4% nucleotide homology with other 87 referenced PDCoV strains from different areas, and contained 6 and 9-nt deletions at positions 1,733~1,738 and 2,804~2,812, respectively, in the ORF1a gene. Phylogenetic analyses based on the whole gene sequence as well as S protein and ORF1a/1b protein sequences all showed that this strain was closely related to the Southeast Asia strain. When 7-day-old piglets were inoculated orally with the CHN/GX/1468B/2017 strain, they developed severe diarrhea, with a peak of fecal viral shedding at 4 days post-infection. Although no death or fever were observed, the CHN/GX/1468B/2017 strain produced a wide range of tissue tropism, with the main target being the intestine. Importantly, the VH:CD ratios of the jejunum and ileum in infected piglets were significantly lower than controls. These results indicate that CHN/GX/1468B/2017, isolated in China, is a novel PDCoV Southeast Asia-like strain with distinct genetic characteristics and pathogenicity. This finding enriches the international information on the genetic diversity of PDCoV.

11.
Ann Transl Med ; 9(22): 1656, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34988165

RESUMEN

BACKGROUND: Gliosis and inflammation are pivotal in the development of acute and chronic pain. Here, we demonstrated a previously unidentified molecular mechanism in which the activation of exchange proteins directly activated by cyclic adenosine monophosphate (Epac)1 accelerated the activation of astrocytes in the spinal cord, thereby promoting chronic postsurgical pain (CPSP). METHODS: We established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR). Pain behaviors were assessed using mechanical withdrawal threshold (MWT) at different times. The lumbosacral enlargement of the spinal cord was isolated to detect the expression of Epac1 and the activity of astrocytes. They were assessed using western blot and immunofluorescence staining. RESULTS: SMIR induced persistent mechanical hyperalgesia after surgery. This hyperalgesia response was prolonged to more than 21 d after surgery. The time course of spinal Epac1 upregulation was correlated with SMIR-induced pain behaviors. Meanwhile, Epac1 immunoreactivity was colocalized primarily with astrocytes but not with microglial cells or neurons on 7 d after surgery. Intrathecal injection of Epac1 inhibitor CE3F4 significantly suppressed SMIR-induced mechanical allodynia and activation of astrocytes in the spinal cord. This analgesic effect of single-dose administration of CE3F4 lasted up to 6 h and wore off at 12 h after injection. CONCLUSIONS: Spinal Epac1-mediated activation of astrocytes may facilitate CPSP. Inhibition of Epac1 may effectively prevent CPSP.

12.
Gene ; 764: 145090, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-32861880

RESUMEN

Litopenaeus vannamei (L. vannamei) is one of the most widely cultured shrimp species in the world. The species often suffers from cold stress. To understand the molecular mechanism of cold tolerance, we performed transcriptomic analysis on two contrasting cultivars of L. vannamei, namely, cold-tolerant Guihai 2 (GH2) and cold-sensitive Guihai1 (GH1), under a control temperature (28 °C), cold stress (16 °C), and recovery to 28 °C. A total of 84.5 Gb of sequences were generated from 12 L. vannamei hepatopancreas libraries. The de-novo assembly generated a total of 143,029 unigenes with a mean size of 1,052 bp and an N50 of 2,604 bp, of which 34.08% were annotated in the Nr database. We analyzed the differentially expressed genes (DEGs) between nine comparison groups and detected a total of 21,026 DEGs. KEGG pathways, including lysosome, sphingolipid metabolism and nitrogen metabolism, were significantly enriched by DEGs between different temperatures in GH2. Furthermore, eight of the most significantly DEGs under cold stress from the transcriptomic analysis were selected for quantitative real-time PCR (qPCR) validation. Overall, we compared gene expression changes under cold stress in cold-tolerant and cold-sensitive L. vannamei for the first time. The results may further extend our understanding of the cold stress-response mechanism in L. vannamei.


Asunto(s)
Aclimatación/genética , Respuesta al Choque por Frío/genética , Hepatopáncreas/metabolismo , Penaeidae/fisiología , Mariscos , Animales , Acuicultura , China , Frío/efectos adversos , Regulación de la Expresión Génica/fisiología , Anotación de Secuencia Molecular , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/genética
13.
Mol Med Rep ; 22(6): 4821-4827, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33173987

RESUMEN

Chronic postsurgical pain (CPSP) has a high incidence, but the underlying mechanism is not well understood. Accumulating evidence has suggested that central sensitization is the main mechanism of pain. To study the role of p120 in CPSP, a skin/muscle incision and retraction (SMIR) model was established, and immunofluorescence staining and western blotting were performed to analyze the expression of p120 in the spinal cord and dorsal root ganglion (DRG). The results demonstrated that SMIR increased the expression of p120 in the DRG and the spinal cord compared with the naive group. Furthermore, it was demonstrated that p120 was mainly distributed in the glial fibrillary acidic protein­positive astrocytes in the spinal cord, and in the neurofilament 200­positive medium and large neurons in the DRG. Our previous studies have shown that adenosine triphosphate­sensitive potassium channel (KATP) agonists can reduce postoperative pain in rats. Therefore, the changes in p120 were observed in the DRG and spinal cord of rats following the intraperitoneal injection of nicorandil, a KATP agonist. It was demonstrated that nicorandil administration could relieve mechanical pain experienced following SMIR in rats, and decrease the expression of p120 in the DRG and spinal cord. The results revealed that p120 may contribute to the prophylactic analgesic effect of nicorandil, thus providing a novel insight into the mechanism of CPSP prevention.


Asunto(s)
Cateninas/metabolismo , Dolor Crónico/tratamiento farmacológico , Nicorandil/farmacología , Dolor Postoperatorio/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Animales , Astrocitos/metabolismo , Dolor Crónico/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Masculino , Nicorandil/uso terapéutico , Dimensión del Dolor , Dolor Postoperatorio/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Catenina delta
14.
Viruses ; 12(4)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224965

RESUMEN

Newcastle disease is an important poultry disease that also affects Columbiform birds. The viruses adapted to pigeons and doves are referred to as pigeon paramyxoviruses 1 (PPMV-1). PPMV-1 are frequently isolated from pigeons worldwide and have the potential to cause disease in chickens. The complete genomes of 18 PPMV-1 isolated in China during 2012-2018 were sequenced by next-generation sequencing (NGS). Comprehensive phylogenetic analyses showed that five of the viruses belong to sub-genotype VI1.2.1.1.2.1 and 13 isolates belong to sub-genotype VI.2.1.1.2.2. The results demonstrate that these sub-genotypes have been predominant in China during the last decade. The viruses of these sub-genotypes have been independently maintained and continuously evolved for over 20 years, and differ significantly from those causing outbreaks worldwide during the 1980s to 2010s. The viral reservoir remains unknown and possibilities of the viruses being maintained in both pigeon farms and wild bird populations are viable. In vivo characterization of the isolates' pathogenicity estimated mean death times between 62 and 114 hours and intracerebral pathogenicity indices between 0.00 and 0.63. Cross-reactivity testing showed minor antigenic differences between the studied viruses and the genotype II LaSota vaccine. These data will facilitate PPMV-1 epidemiology studies, vaccine development, and control of Newcastle disease in pigeons and poultry.


Asunto(s)
Infecciones por Avulavirus/veterinaria , Avulavirus/genética , Columbidae/virología , Genoma Viral , Genómica , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Animales , Avulavirus/inmunología , Avulavirus/aislamiento & purificación , China/epidemiología , Reacciones Cruzadas , Genómica/métodos , Genotipo , Historia del Siglo XXI , Epidemiología Molecular , Filogenia , Enfermedades de las Aves de Corral/historia , Enfermedades de las Aves de Corral/inmunología , Secuenciación Completa del Genoma
15.
Pain Res Manag ; 2019: 9017931, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863475

RESUMEN

Chronic postsurgical pain (CPSP) is a chronic pain state that is difficult to be treated clinically. A series of complicated changes have been produced from nociceptive stimulation to the occurrence and development of postsurgical pain. Many mechanisms remain unclear. In order to study the role of intercellular gap junctions in inducing inflammatory microenvironment at the beginning of nociceptor after operation, the model of skin/muscle incision and retraction (SMIR) was established. We observed the changes of the expression of exchange proteins directly activated by cAMP-1 (Epac1) and p120 catenin (p120), the quantities of macrophages and endothelial cells, vascular endothelial permeability, and mechanical withdrawal threshold (MWT). It was found that macrophages and endothelial cells were functionally coupled through Epac1-p120. Adhesive linkage disorder remodeled the chronic, inflammatory, and eutrophic microenvironment at the beginning of nociceptor after operation through macrophages, endothelial cells, and endothelial paracellular pathways. It might be an early event and a key step in peripheral sensitization of CPSP. The expression of p120 in muscle tissue around the incision might become a prognostic marker for the conversion of acute postsurgical pain into CPSP. Targeted intervention of Epac1-p120 might be a clinical strategy for inhibiting the conversion of acute postsurgical pain into CPSP.


Asunto(s)
Cateninas/metabolismo , Dolor Crónico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Dolor Postoperatorio/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Catenina delta
16.
Genome Announc ; 6(17)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700145

RESUMEN

Porcine circovirus type 3 (PCV3) was first described in 2016 in U.S. swine herds as a pathogenic agent for pigs. To date, PCV3 has been reported to be widely circulating in the United States, China, South Korea, Brazil, Italy, and Poland. Here, we report the genome sequence of a PCV3 strain (CH/GX/1776D/2017) isolated from Guangxi Province in southern China. The sequence data presented in this study will help us better understand the molecular characteristics and genetic diversity of PCV3 in China.

17.
Glia ; 66(2): 256-278, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29058362

RESUMEN

Direct induction of macrophage ramification has been shown to promote an alternative (M2) polarization, suggesting that the ramified morphology may determine the function of immune cells. The ketone body metabolite ß-hydroxybutyrate (BHB) elevated in conditions including fasting and low-carbohydrate ketogenic diet (KD) can reduce neuroinflammation. However, how exactly BHB impacts microglia remains unclear. We report that BHB as well as its producing stimuli fasting and KD induced obvious ramifications of murine microglia in basal and inflammatory conditions in a reversible manner, and these ramifications were accompanied with microglial profile toward M2 polarization and phagocytosis. The protein kinase B (Akt)-small RhoGTPase axis was found to mediate the effect of BHB on microglial shape change, as (i) BHB activated the microglial small RhoGTPase (Rac1, Cdc42) and Akt; (ii) Akt and Rac1-Cdc42 inhibition abolished the pro-ramification effect of BHB; (iii) Akt inhibition prevented the activation of Rac1-Cdc42 induced by BHB treatment. Incubation of microglia with other classical histone deacetylases (HDACs) inhibitors, but not G protein-coupled receptor 109a (GPR109a) activators, also induced microglial ramification and Akt activation, suggesting that the BHB-induced ramification of microglia may be triggered by HDACs inhibition. Functionally, Akt inhibition was found to abrogate the effects of BHB on microglial polarization and phagocytosis. In neuroinflammatory models induced by lipopolysaccharide (LPS) or chronic unpredictable stress (CUS), BHB prevented the microglial process retraction and depressive-like behaviors, and these effects were abolished by Akt inhibition. Our findings for the first time showed that BHB exerts anti-inflammatory actions via promotion of microglial ramification.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Antidepresivos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Cuerpos Cetónicos/metabolismo , Neuropéptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo
18.
Neurobiol Dis ; 111: 12-25, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29248540

RESUMEN

Microglia, a type of immune cell in the brain, are in a ramified status with branched processes in normal conditions. Upon pathological stimulation, microglia retract their processes and become activated. Searching methods to make the activated microglia return to ramified status would help cope with injuries induced by neuroinflammation. Here, we investigated the influence of sodium butyrate (SB), a sodium salt form of butyrate produced by fermentation of dietary fibers in the gut on microglial process. Results showed that SB induced reversible elongations of microglial process in both normal and inflammatory conditions, and these elongations were accompanied with significant changes in markers reflecting the pro-inflammatory and anti-inflammatory status of microglia. The protein kinase B (Akt)-RhoGTPase signal was considered to mediate the effect of SB on microglial process, as: i) SB activated the small RhoGTPases Rac1 and Cdc42; ii) SB promotes Akt phosphorylation; iii) Rac1, Cdc42, and Akt inhibition abrogated the pro-elongation effect of SB on microglial process. Further analysis showed that incubation of microglia with two other histone deacetylases (HDACs) inhibitors trichostatin A (TSA) and valproic acid (VPA) also promoted microglial process elongation and Akt phosphorylation, suggesting that the SB-triggered microglial process elongation may be mediated by HDACs inhibition. Furthermore, Akt inhibition prevented the anti-inflammatory effect of SB in primary cultured microglia, and abrogated the inhibitory effects of SB on microglial process retraction and behavioral abnormalities induced by lipopolysaccharide (LPS). These results for the first time identify an anti-inflammatory role of SB from the aspect of microglial process elongation.


Asunto(s)
Ácido Butírico/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Microglía/efectos de los fármacos , Microglía/enzimología , Animales , Antiinflamatorios no Esteroideos/farmacología , Aumento de la Célula/efectos de los fármacos , Células Cultivadas , GTP Fosfohidrolasas/metabolismo , Histona Desacetilasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/patología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/enzimología , Corteza Prefrontal/inmunología , Corteza Prefrontal/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
19.
Genome Announc ; 5(48)2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192069

RESUMEN

We report here the complete genomic sequence of Japanese encephalitis virus (JEV) strain FC792, isolated from aborted fetuses of sows which were unimmunized with JEV vaccines in Guangxi Province, southern China. The complete JEV genome of strain FC792 had the highest nucleotide homology (99.7%) and amino acid identity (99.4%) with the sequence of JEV strain SA14-14-2 (GenBank accession number AF315119). Phylogenetic analysis showed that strain FC792 had the closest phylogenetic relationship to the sequence of strain YUNNAN0901 (GenBank accession number JQ086762). This study will help us understand the molecular pathogenesis and genetic diversity of genotype III Japanese encephalitis virus in pigs.

20.
Genome Announc ; 5(27)2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28684562

RESUMEN

We report here the complete genome sequence of porcine epidemic diarrhea virus (PEDV) strain CH/GX/2015/750A (750A), which was isolated from a suckling piglet with watery diarrhea in Guangxi, China. The isolate is genetically close to other recent Chinese variant PEDVs and distinct from the classical PEDVs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...